
/n,. J. Hear Moss Transfer. Vol. 29. No. 6, pp, 869-877,1986 0017-9310j86$3.00+0.00 

Printed in Great Britain Pergamon Journals Ltd. 

Numerical predictions of natural convection 
in a Trombe wall system 

S. J. ORMISTON,? G. D. RAITHBY and K. G. T. HOLLANDS 

Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3Gl 

(Received 6 March 1985 and injnalform 25 November 1985) 

Abstract- In a Trombe wall passive heating system, air from a room is circulated by natural convection 
through a narrow channel formed by a window on one side and a wall on the other. The circulating flow 
delivers the solar energy collected by the wall and window to the room. The present paper analyses an idealized 
Trombe wall system in which the flow is laminar and two-dimensional and the window and wall are 
isothermal. A dimensional analysis shows that, for a given geometry, the flow and heat transfer are 
characterized by two Rayleigh numbers. Flow and heat transfer predictions over a wide range of operating 
conditions were performed using a finite-volume method. These predictions are believed to be the first that 
fully account for the interaction between the room and channel, and which include the important case where 

the window temperature is lower than the room temperature. 

INTRODUCTION 

CONSIDERABLE interest has been shown recently in the 

application of the Trombe wall, indirect gain, passive 
solar heating system [ 11. In this system a high thermal 
capacitance wall is located on the room side of large 
windows, forming a narrow channel between wall and 
window. Solar energy is absorbed and stored by the 
wall. Heat is delivered to the adjacent room partly by 
conduction through the wall and partly by a natural 
convection flow, through the channel, that is con- 
trolled by vents at the bottom and top of the wall. 

There are two categories of studies associated with 
the heat transfer and fluid flow of this system. The first is 
concerned with natural convection between heated, 
vertical, parallel plates (simulating the channel region). 
The other studies are concerned specifically with the 
Trombe wall system. 

In the first of these categories, very significant 
experimental and theoretical work was reported by 
Elenbaas [a]. Siegel and Norris [3], Novotny [4], and 
Aung et al. [5] also provided extensive experimental 
data on the flow and heat transfer between parallel 
plates. A theoretical study by Aung [6] provided the 
fully developed solutions for asymmetrically heated, 
parallel plates. The effect of the inlet pressure condition 
was studied by Quintiere and Mueller [7]. Bodia and 
Osterle [8] reported the first numerical study of 
flow between symmetrically heated, vertical plates. 
Approximations were introduced which permitted the 
solution to be marched from the inlet to the outlet 
(parabolic flow). Aung et al. [S] and Miyataka et al. 

[9-ll] extended this type of calculation to include 
asymmetrically heated plates. Aihara [12] concluded 
that the effect of inlet pressure drop, associated with the 
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acceleration of the fluid entering the parallel plate 
channel, should be included in the parabolic analyses. 
The only fully elliptic numerical analyses of the parallel 
plate problem that include the inlet flow effects were 
limited to isothermal plates of equal temperature 
[13, 141. These showed that the uniform temperature, 
velocity and pressure at the duct inlet, assumed in the 
parabolic flow analyses, are unrealistic and indeed 
affect the predicted heat transfer. 

The second category of studies reviewed here are 
those directly concerned with the Trombe wall 
problem. Casperson [15] reported results of a 
preliminary experimental study of a Trombe wall 

system. Mussulman et al. [l&18] provided detailed 
measurements, numerical predictions and flow visual- 
ization results for a system that used silicone oil as the 
convecting medium. Tichy [19] analysed the effects 
ofinlet and exit losses from the channel, and Akbari and 
Borgers [20] extended Aihara’s work [12] to the 
Trombe wall problem. Pratt and Karaki [21] solved 
the boundary layers within a vertical plate channel with 
asymmetric wall temperatures. More recently [22], 
they reported solutions for parabolic turbulent flow 
from an analysis which used an eddy viscosity 
turbulence model and in which effects of inlet and out- 
let losses were incorporated. Experimental data for a 
full size Trombe wall were recently reported by 
Akbarzadeh et al. 1231. 

The above survey indicates that flow in the full 
Trombe wall system, including the channel, the room 

and inlet and outlet sections, has never been predicted. 
Furthermore, no predictions have been reported for 
cases in which the window temperature is lower than 
the room temperature, despite the expected frequent 
occurrence of this condition. The present study predicts 
the flow and heat transfer in the entire system, and 
includes the case where the window temperature is 
lower than the room temperature. In addition, the 
results of an analysis is presented which shows that, for 
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NOMENCLATURE 

C clearance above and below wall, Fig. 1 

Cm1 
d room width, Fig. 1 [m] 

9 gravitational acceleration [m SK”] 
H wall height, Fig. 1 [ml 
k thermal conductivity of air 
1, m dimensions associated with isothermal 

region in room, Fig. 1 
M* dimensionless mass flow through channel, 

equation (8) 
Nu, Nusselt number for wall, equation (6) 
Pr Prandtl number of air, (y/cd 
Q, total rate of heat transfer from wall to air 

in channel, Fig. 1 
Qz total rate of heat transfer from window to 

air in channel, Fig. 1 
QR total heat delivered to room 

(QR = QI +QA 

Ra, Rayleigh number, equation (5) 
Ra, Rayleigh number, equation (4) 
S spacing between window and wall, Fig. 1 

T1 wall temperature, Fig. 1 

Tz window temperature, Fig. 1 

T3 ‘room’ temperature, Fig. 1 

r average channel wall temperature, 

( TI + U/2 
v average air velocity along channel 

[m s-i] 
v,,r reference velocity, equation (3) 
W width of wall, Fig. 1. 

Greek symbols 
V kinematic viscosity of air [m” S-‘1 

r thermal diffusivity of air [m’ s _ ‘I. 

a given geometry, the flow and heat transfer is defined 
by two Rayleigh numbers. The combined results of the 
present study improves both the understanding and 
predictive capabilities related to the flow and heat 
transfer in Trombe wall systems. 

PROBLEM DESCRIPTION 

Description of idealized problem 
The idealized Trombe wall problem considered in 

this study is shown in Fig. 1. Radiation through the 
‘window’ on the left side of the room heats the surface of 
the ‘Trombe wall’ that faces the window to a uniform 
temperature T,. For the purposes of the present study, 

In the present study, the geometry was defined by the 
following lengths, expressed in terms of the channel 

spacing S, 

H = l&S, C = S, W = S, d = 20s. (1) 

The room therefore has a square cross-section, and has 
identical clearances between the wall and the floor, 
window and ceiling. The heat load delivery area is 

defined by 
l=llS, m=5S. (2) 

Dimensionless parameters 
The full equations of motion, valid for laminar or 

turbulent flow, are used as the starting point in an 

the top, bottom, and room-side surfaces ofthe wall were 
taken to be adiabatic. The window temperature was 
assumed isothermal at temperature T,, where Tz < Tl. 
Air is drawn by natural convection through the 
clearance of width C below the wall, along the channel 
of spacing S between the wall and window, and is 
discharged through the clearance C between the top of 
the wall and the ceiling. The flow delivers heat to the 
room and, being cooled, is circulated back through the 
channel. 

The heat transfer within the room is a complex 
process that, in applications, ivill involve heat exchange 
with the walls, interaction with the air circulation 
system, the effect of heat sources in the room, etc. In 
the present model, the natural convection flow was 
assumed to move everywhere freely through the room, 
but the temperature of the air within the trapezoidal 
region indicated in Fig. 1 was enforced to be T3. This 
models the case where the room walls are adiabatic 

WINDOW 

1 

WALL 

! ISOTHERMAL 
; REGION AT 

TEMPERATURE 

but a perfect heat exchanger (infinite heat transfer 
coefficient and zero pressure loss) maintains the T3 FIG. 1. Schematic for the idealized Trombe wall problem 
temperature. studied. Cross hatched sections denote adiabatic surfaces. 
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analysis to determine the important dimensionless 
groups governing the flow and heat transfer in the 
idealized problem just described. These equations are 
simplified by asserting that the mean flow is two- 
dimensional, the fluid is Newtonian, and the 
Boussinesq approximation applies. These equations 
are then non-dimensionalized [24] using reference 

length Iref, time tref, velocity v,,r [253, pressure pref and 
temperature AT.,,, where 

lrer = S, AL = (r, - T3), v,,r = ~ 

t lref 
ref = 73 Pref = P&f. 

Upon simplification, the non-dimensional equations of 
motion and boundary conditions are found to contain 
the length ratios defined by equations (1) and (2)-i.e. 
HIS, CJS, etc.-as well as Prandtl number, Pr, and the 
following two Rayleigh numbers 

Ra 
I 

= g/WY - r,)S3 
VU 

Ra = sB@- TN T,+T, 
E 

--- T=,. vciH (5) 

The ‘internal’ Rayleigh number, Ra,, governs the 
natural convection interaction between the wall and 
window. The ‘external’ Rayleigh number, Ra,, governs 
the natural convection interaction between the room 
and the channel. If Ra, = 0, and Ra, > 0, a flow 
recirculation should occur between the wall and 
window that is analogous to that in a differentially 
heated vertical channel, closed at the top and bottom, 
that has been frequently studied. The other limiting 
case, Ra, = 0, Ra, > 0, is identical to the problem of 
natural convection flow between isothermal symmetri- 
cally heated plates in an infinite environment, except for 

the inlet and outlet effects. 
In Trombe wall applications, the working fluid is air 

(so Pr = 0.71), Ra, 6 lo’, and Ra, 5 105. The present 
study is limited to 0 < Ra, < 105, and 0 < RaE G lo5 
where the flow is presumed to be laminar. The 
limitation on the Ra, range covered by the analysis is 
therefore quite restrictive, but the results do provide 
quantitative data for a portion of the parameter 
range of interest and insight into the expected flow 
behaviour. 

The total natural convection heat transferfrom the 
Trombe wall and window to the fluid in the channel are 
respectively Qi and Qz so that the heat delivered to the 
room is QR = (Qi +QJ. The heat flow Q1 is expressed 
non-dimensionally in terms of a Nusselt number as 

QIS 
Nul = (Tl - T,)Hk’ 

A knowledge of Nu, permits Qi to be calculated. The 
heat delivered to the room QR can be calculated from 
the ratio 

which is a measure ofthe Trombe wall effectiveness. For 
the case when the window and wall temperatures are 

the same, Q2 z Qi, so this ratio should approach a 

value near 2. As the window temperature drops relative 
to T,, the heat flow Q, drops and eventually changes 
sign. At the point where (Tl + T,)/2 = T3, Qz x -Q1 
and the heat delivered to the room is nearly zero. The 
regime of still lower values of T2, where there is a net 
heat loss from the room to the window (Ra, < 0), was 
not considered in this study. 

The ratio Q2/Q1 can be obtained directly from 
equation (7) once Q,JQ 1 is specified. Another quantity 
OfinterestisQ, -s/Qi, theratioofthenet heatflowfrom 
the wall delivered to the room to the total heat 
transferred from the wall. Predicted values of both 
Qa/Q , and Q i _ JQ i will be presented in this paper. 

The mass flow induced through the channel is also of 
interest. This can be calculated from the dimensionless 
mass flow rates, M*, that are also reported below. M* is 
defined as follows : 

M* = ‘/‘4 = Re J Pr( 1 + Pr) 
(HRa,/S +&Ra,)’ (8) 

In equation (8) V is the average velocity across 

the channel and the Reynolds number is defined as 
Re = pSti/p. 

MATHEMATICAL FORMULATION 

AND SOLUTION 

As already stated, the flow is assumed to be laminar, 
Newtonian and two-dimensional, and the Boussinesq 
approximations are applied; the geometry is shown in 
Fig. 1. The appropriate form of the equations of motion 
depends on the type of computational grid and on the 
particular discrete method used. This section therefore 
first describes the grid, then the equations of motion, 
and finally briefly describes the solution technique 
used. 

Computational grid 
The computational grid, shown in Fig. 2, was 

orthogonal with one co-ordinate (constant x1) forming 
closed paths that wrap around the wall. The plotter 
used to generate Fig. 2 displayed discontinuities in the 
grid-line slopes but in reality the grid was smooth and it 
subdivided the domain into areas which, except at the 
corners of the solution domain, were fully orthogonal. 
This grid was generated using a package developed by 
Karpik [26], which utilizes a refinement of the method 

proposed by Barfield [27]. 
The flow and heat transfer results reported below 

were obtained using 1600 control volumes, 20 in the x2- 
direction by 80in thex,-direction in Fig. 2. Of these, 680 
control volumes were distributed in channel between 
the isothermal surfaces, with another 320 in the top and 
bottom channel and vent regions, and 600 in the room. 
The density of the grid in the x,-direction was highest 
near the wall and window and, in the x,-direction, near 
the bottom and top of the channel. 
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dT/dn = ",=u~=O 

FIG. 2. Computational grid used for the predictions reported. 
Boundary conditions on the solid surfaces are also shown. 

Equations of motion 
The equations of mass, momentum and energy 

conservation written in general orthogonal coordi- 
nates, simplified by incorporating the approximations 
outlined above are [28] 

=_- h; ~@‘9’)+~(hl92) 
1 2 [ 1 2 1 

(9) 

(IO) 

(11) 

(12) 

where 

k aT k aT __- 
q1 = - C,h, ax, q2 = - C,h, ax2 

012 =P 

1 1 ah, 1 1 ah, , 

13) 

14) 

-=-- _=--, 
rl h,h, ax, r2 h,h, ax, 

(15) 

In these equations u1 and u2 are the orthogonal 
velocities in the x1- and x,-directions, respectively, T is 

temperature, a is stress and r is grid curvature. The 
‘buoyancy term’ in the x,-direction is -&gi(T- T,) 
where gi is the component of gravity in the direction of 
xi. The predicted velocities and temperatures must be 
independent of the reference temperature T, chosen, 
but it is convenient to select T, as the room 
temperature T3. All property values in equations (9t 
(14) were treated as constant. 

The values of u1 and u2 on all solid boundaries in Fig. 

1 were prescribed as zero. The heat flux was set to zero 
on the cross hatched boundaries in the figure, Tl and T2 
were prescribed on the wall and window respectively, 
and T3 was enforced over the ‘heat exchanger’ region in 
Fig. 1. 

Solution method 
A finite-volume method, similar to the method 

described by Patankar [29] for the special case of 
Cartesian grids, was used to solve the genera1 
orthogonal equations. Details are provided by Raithby 
et al. [28] and in the thesis of Ormiston [24]. 

The ‘outer’ interation loop in the solution algorithm 

began by updating the coefficients of the linear alge- 
braic equations representing mass, momentum and 
energy. At the completion of one outer iteration, the 
solution to these equations was obtained to some 
tolerance. The loop was repeated until the following 
convergence criterion was met 

where 4 is a dependent variable, A&,,,, is the maximum 
change in 4 from one coefficient update to the next, 
and D(d) is the difference between the maximum and 
minimum values of 4 within the solution domain. In 
most cases, the temperature and pressure were driven to 
eT = sp < 0.0005 but in a few cases a mild oscillatory 
behaviour resulted in an intermittent exchange of fluid 
from the channel to the room. By plotting the wall heat 
fluxes in these cases over a number of oscillations, it was 
established that the amplitudes of the variations in 
Q1 and Q2 were insignificant compared to Q1 and Q2, 
respectively. 
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Calculations were performed on an IBM4341 
computer, with CPU times of approximately 70 min for 

each solution. 

Code verijkation runs 
Before attempting to solve the Trombe wall problem 

the code was extensively exercised on a number of 
problems to check its validity. Calculations were per- 
formed for the classical Cartesian problems of flow 
in a square cavity driven by a sliding lid, and for natural 
convection in a square cavity with differentially heated 
walls. Forced flow through a tank [30] was also solved. 
The predictions were found to agree exactly with those 
from an independently developed code. Next, natural 
convection and Couette flow in a cylindrical annulus 
were analysed using a circular cylinder coordinate 
system, and these were again checked by comparisons 
respectively with prior calculations and with the exact 
solution. 

The problem of natural convection between parallel, 
symmetrically heated, vertical plates in an infinite 
environment was solved and the results compared 
to the parabolic-flow predictions of Worku [31]. 
Excellent agreement was found for both temperature 
and velocity except very near the inlet. Mesh refine- 
ment in this region established that the present 
calculations were very nearly grid independent. The 
small discrepancies were concluded to arise from the 
elliptic nature of the flow near the inlet, which was not 
accounted for in Work& analysis. The inlet flow to 
vertical, parallel, symmetrically heated plates was also 
predicted and results compared with the predictions of 
Kettleborough [13] and Nakamura et al. [14]. These 
two previous studies were in substantial disagreement 
with each other; the present results [24] fell much 
closer to those of Nakamura et al., but significant 
differences did exist. 

Based on the above, and other studies, it was 
concluded that the code could be reliably applied to the 
Trombe wall problem. Results for this problem are now 
presented. 

RESULTS FOR TROMBE WALL PROBLEM 

The average heat transfer rates are the quantities of 
design interest, so that these are presented first. Some 
details of the flows that give rise to these results will be 
presented later. 

Average heat transfer predictions 
Ra, = 0, Ra, > 0. It is instructive to first discuss 

results for Ra, = 0, Ra, > 0. In this limit, the heat 
transferred from the wall should mainly flow to the 
window, and a recirculation pattern should be 
established in the channel with zero net through-flow. 
The predicted heat transfer would, under these con- 
ditions, be expected to agree closely with those for 
heat transfer across a vertical cavity with adiabatic 
walls at the top and bottom. A comparison with the 
predictions of Wong and Raitbby [32, 331 indicate that 

9 

FIG. 3. Comparison of the heat transfer from parallel plates 
measured by Elenbaas [Z] with the predicted heat transfer 
from the Trombe wall geometry. Losses at the inlet and outlet 

are thought to account for the discrepancy. 

the present heat transfer is within 3% over the entire Ra, 

range. 

Ra, = 0, Ra, > 0. Another limiting case of interest 
occurs when the wall and window are at the same 

temperature (Tl = T,) but the room is cooler. Except 
for pressure losses and asymmetries, due to entrance 
and exit effects, this problem resembles the ‘parallel, 
symmetrically heated plates in an infinite environment’ 
problem [2, 83 that has been extensively studied. The 
predictions of the present study are compared to the 
edge-corrected measurements of Elenbaas [Z] in Fig. 3. 

The losses appear to cause a 10% reduction in heat 
transfer at Ra, = 104, with the difference increasing to 
about 30% at Ra, = 10. 

Mass flow through channel, Ra, > 0, Ra, > 0. The 
dimensional mass flow through the channel increases 
monotonically with Ra,, but Fig. 4 shows that the 
dimensionless mass flow rate through the channel is 
nearly independent of RaE provided Ra,/Ra, is 

sufficiently small. Large values of RaJRa, tend to 
create a counter flow along the cold window which 
chokes off the flow through the channel. 

FIG. 4. Dimensionless mass flow through the channel vs 
external Rayleigh number for Ra, = 0, 103, lo4 and 10’. 
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FIG. 5. Dimensionless heat transfer from the Trombe. wall vs 
external Rayleigh number for Ra, = 0, 103, 10“ and IO’. The 

asymptotic results for Re, -+ 0, are also shown. 

Heat transfer from the Trombe wall. The dimension- 
less heat transferred from the Trombe wall, Nu,, is 
plotted in Fig. 5. The Ra, = 0 curve corresponds to the 
curve compared to the Elenbaas measurements in Fig. 
3. For larger Ra,, the wall heat transfer Qr increases 
because of extra heat losses to the window. In the limit, 
as Ra, + 0, the asymptotic value of Nu, represents heat 
transfer mainly between the wall and window, as 
discussed above. It is interesting to note that Nu, passes 
through a minimum as the Ra, -+O asymptote is 
approached. Figure 5 permits the total heat flow from 
the wall, Qi, to be calculated. 

Heat transfer to the room and window. Once Qr is 

known, the total heat delivered to the room, Qa = Q1 
+ Q2, can be found from Fig. 6 from ratio QR/QI. For 

FIG. 6. Plot of the total heat transfer to the room, Qs, the 
fraction of the heat transfer from the wall that is delivered to 
the room, Q1 -R, and the heat transfer from the window, Q,, all 

normalized by Q, 

Ra,/Ra, < 1, the window supplies more heat to the 
room than the wall (so that QR/QI exceeds 2) because of 
the flow asymmetry already discussed. As Ra, increases 
(i.e. the window temperature drops), the heat supplied 
to the room decreases until at Ra,/RaE z 25, the net heat 
transfer from the window is zero. For Ra,/Ra, > 25, a 
diminishing fraction of Qr is delivered to the room with 
the remainder being lost to the window. 

The heat transfer interaction between the wall, the 
window and the room is further clarified in Fig. 6 by 
plotting the ratio Q2/Q1, and the fraction of Qr 
delivered to the room (Qi _a/Qi). Q2/Q1 approaches a 
value of roughly 1.1 for TI = T, and falls to - 1 for high 
values of Ra,. Over the regime ofpositive Q2, all the heat 
transferred from the wall is delivered to the room. The 
fraction of Q, delivered to the room when Q2 is negative 
coincides with the QR/QI curves discussed in the 
previous paragraph. At RaIlRaE 2 400, less than 10% 
of the heat transferred from the wall is delivered to the 
room. 

Window temperatures will be encountered in prac- 
tice that are sufficiently cold that T-T, becomes 

negative. In such cases, the net flow through the channel 
will reverse and the Trombe wall system will deliver 
heat from the room to the wall and window (Qa < 0). 
Under such conditions, the circulation should be elimi- 
nated by closing the vents. 

Velocity and temperature distributions 
With the overall performance of the system 

understood, it may be of interest to examine briefly 
some of the details of the flow that give rise to the 
performance just reported. 

Ra, >> Ra,. Figures 7A and B present streamline and 
isotherm plots respectively for Ra, = 0, Ra, = 105. The 
heated wall and window induce a channel flow that 
results in a general clockwise circulation in the room. 
The flow drawn into the channel separates near the 
bottom of the wall causing higher velocities to occur 
near the window. This results in the asymmetric 
isotherms in Fig. 7B. This figure also indicates that 
significant stratification occurs near the ceiling in the 
room. An examination of the isobars [24] indicates 
significant variations in pressure across the channel 
near the inlet and outlet of the channel, bringing into 
question the validity of the parabolic flow approxi- 
mation for this problem. 

Ra, << Ra,. Figures 7C and D present streamline and 
isotherm plots respectively for Ra, = 104, Ra, = 10’. 
The flow in this case primarily circulates within the slot 
with very little exchange with the room. A slightly 
unsteady oscillation, discussed previously, results in the 
small eddies shed from the channel. The isotherms in 
Fig. 7D show that a strong stratification develops along 
both the floor and ceiling. 

Other cases. Figures 7A, B and C, D illustrate flow 
patterns dominated respectively by Ra, and Ra,. For 
cases where Ra E z Ra,, the flow moves down along the 
cold window but separates before reaching the bottom 
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FIG. 7. Streamlines (A) and isotherms(B) for Ra,/Ra, >> 1 (Ra, = 0, Ra, = 105). Streamlines(C) and isotherms 
(D) for Ra,/Ra, cc 1 (Ra, = 105, Ra, = 10’). 

because of the channel through flow. This and other 
cases have been presented by Ormiston [24]. 

DISCUSSION 

The results presented in this paper represent the first 
calculations of two-dimensional, laminar, fully elliptic 
flow in a Trombe wall system. The contributions of this 
study included the following : 

1. A non-dimensionalization of the equations of 
motion resulted in the conclusion that the main 
parameters governing the flow and heat transfer, for 
a given geometry, are the internal and external 
Rayleigh numbers, Ra, and Ra,. The flow and heat 

transfer in the Trombe wall in limiting cases, where 
Ra, >> Ra, and Ra, << Ra, closely resemble those for 
two classical natural convection problems. 
The paper presents the first Trombe wall predictions 
which fully account for the interaction of the room 
and the flow within the channel, and which examine 
the important cases where the window temperature 
is lower than the room temperature. 
Heat transfer results have been presented for 
determining the efficiency by which heat stored in 
the wall is delivered to the room. Predicted mass 
flow rates through the channel are also presented. 
A survey of the local velocities and temperatures 
provide further insight into the behaviour of the 
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system. Pressure predictions indicate significant 
pressure variations across the channel near the inlet 
and outlet, bringing into question the validity of 
parabolic solution procedures. 
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CALCUL NUMERIQUE DE LA CONVECTION NATURELLE DANS UNE PAR01 TROMBE 

RCsumB-Dans un systeme de chauffage passifl paroi Trombe, l’air venant dune piece circule par convection 
naturelle a travers un canal btroit entre une vitre et un mur. L’ecoulement qui circule apporte a la piece 1’energie 
solaire collect&e par le mur et la vitre. On analyse un systeme Trombe idealise dans lequel l’ecoulement est 
laminaire et bidimensionnel, la vitre et le mur sont isothermes. Une analyse dimensionnelle montre que, pour 

une geomttrie don&e, l’icoulement et le transfert thermique sont caracterists par deux nombres de Rayleigh. 
L’ecoulement et le transfert thermique pour un large domaine de conditions operatoires sont calcules a partir 
dune mtthode de volumes finis. Ces resultats sont supposes Ctre les premiers qui tiennent complttement 
compte de l’interaction entre la piece et le canal, et qui incluent lecas important od la temperaturede la vitre est 

plus basse que la temperature de la piece. 

NUMERISCHE BERECHNUNGEN DER NATURLICHEN KONVEKTION IN 
EINEM TROMBEWANDSYSTEM 

Zusammenfassung-In einem passiven Heizungssystem mit einer Trombewand zirkuliert Luft aus einem 
Raum auf Grund natiirlicher Konvektion durch einen schmalen Spalt, der durch ein Fenster und eine 
Wand gebildet wird. Die zirkulierende Strijmung transportiert die Sonnenenergie, die durch das Fenster 
und die Wand aufgenommen wurde, in den dahinterliegenden Raum. In der vorliegenden Arbeit wird ein 
idealisiertes Trombewandsystem analysiert. Die Striimung ist laminar und zweidimensional. Fenster und 
Wand sind isotherme Fllchen. Eine Dimensionsanalyse zeigt, daB Striimung und Wlrmeiibergang bei 
einer gegebenen Geometrie von zwei Rayleighzahlen bestimmt werden. Strdmungs- und Wlr- 
metibergangsberechnungen iiber einen weiten Bereich der Betriebsbedingungen wurden mit Hilfe eines 
Finite-Volumina-Verfahrens durchgefiihrt. Diese Berechnungen sind wohl die ersten, welche die Wech- 
selwirkung zwischen Raum und Spalt vollst%ndig in Betracht ziehen und den wichtigen Fall beinhalten, 

da13 die Temperatur des Fensters geringer ist als die des Raumes. 

rIHCJIEHHOE MCCJIEHOBAHME ECTECTBEHHOH KOHBEKHRH B PAAHATOPE 
TPOM6A 

ArruorauHn-Hpe uaCCIlBHOM o6orpese panHaTOpOM TpoM6a upO&iCXOnIiT eCTeCTBeHHOKOHBCKTUBHaR 

uHpKynSIu&UI KOMHaTHOrO BO3nyXa ',epe3 y3KHii KaHan, 06pa30BaHHbIfi OKHOM C OnHOii CTOpOHbI M 

CTeHKOii C npyrofi. ~EipKynPipyKWtifi nOTOK rIepeHOCuT C6nHe'iHylO 3HeprEil0, aKKyMynEipOBaHHyl0 

cTeHKofi H OKHOM B KoMHaTe.klccnenyeTcn aReanbHbIti panuaTop TpoM6a,xorna re4emre naivrmrapuoe 
A nByMepHOe,a OKHO B CTeHKa Pi30TepMWieCKEie.A~aJui3 pa3MepHOCTeii uOKa3bIBaeT,'ITO &7ll naHHOii 

reoMeTpa&i TeYeHBe II TeunOO6MeH xapaKTepe3yIoTcn LIBYMSI YEiCnaMEi P?UIeSi.TeYeHWI II TeIInOO6MeH B 

~ip0K0~ naanasoae pemnMHbIx uapaMeTpOB paCCWTbIBaIOTC5I ‘WKJEHHO MCTOLZOM KOHe'fHOTO 

o6beMa. @ZnCTaBJIKeTCSI, 'IT0 B paCveTaX BuepBbIe IIOnHOCTblO yWTbIBaeTCS B3aHMOneiiCTBHe MeWly 

KOMHaTOfi A KaHaJIOM; KpOMe TOI-O, OHB BKntOSalOT BaXWbIfi Cny'taii, KOrna TeMuepaTypa OKHa HHme, 

SeMCTeHKA. 


